

Naturalistic Driving DaCoTA – wp6 Data Collection Transfer and Analysis

Transport Research Arena

Athens April 25th, 2012 Niels Bos wp-leader SWOV Institute for Road Safety Research, the Netherlands

Project co-financed by the European Commission, Directorate-General Transport and Energy

Contents

- What do we need? Methods
- Naturalistic Driving Research and Monitoring Scale and technology
- DaCoTA wp6 Driver Behaviour Monitoring through Naturalistic Driving Observations

Methods

- Disadvantages of many methods:
 - Retrospective, when it already happened
 - In an un-natural environment
 - Self reported behaviour
- How do we really drive?
 - Not influenced
 - 'Being present' as a researcher
- ICT 'break through'
 - Sensors
 - Camera's
 - Data-storage (including video)
 - Data-mining

Typical instrumentation

Naturalistic Driving

- (Automated) Observational method
- Natural (driving)behaviour of the participant is observed, in their natural environment
- Uncontrolled
- Huge amount of information \rightarrow linked indicators
- Compare groups (odds ratio) or Case-crossover design (within)

Monitoring versus Research

 Research ("why is it happening") is intended to determine increased risk of a certain behaviour comparable to Blomberg curve on alcohol

Figure 2. Crash rates for various BAC levels (Blomberg et al., 2005)

- Monitoring ("what is happening") intends to describe the prevalence of certain behaviour, such as
 - the percentage of kilometres driven with a BAC level above 0,5‰ or above 1,3 ‰, by day of week and age of driver
 - the percentage of trips in which excessive speeding occurs, by age & gender of driver

DaCoTA FOT-net, Orlando, October 2011

To Study

- Large scale road safety monitoring basic vehicle measures without any video is sufficient
- Crash risk and crash causation trigger based recording would be valuable
- Distraction and inattention continuous video data is required
- Vulnerable road users continuous video data is required and additional data desired
- Vehicle and its usage continuous video data is required
- Road design continuous video data is required and data enrichment is desired

M/2	Data co technolo					
Da	Additional measures or data sources (site based observa data enrichment)					
	Continuous advanced measures (incl. video)			osts		
	Trigger based measures incl. video					
	Continuous basic measure					Sample
		Small <100 vehicle years	Medium >100 vehicle years	Large >1.000 veh. years	Extra large >10.000 veh. years	size

WP6 - Driver Behaviour Monitoring through Naturalistic Driving Observations

We want

- better data, more data
- more efficient data collection
- better comparability
- То

- better analysis, measures, policy

Tasks

- 1. Definition of Naturalistic Driving observations within ERSO
- 2. Study Design
- 3. Small Scale practical study
- 4. Implementation plan for Large Scale Naturalistic Driving research within ERSO

Timing: task 1 is finished, tasks 2 and 3 drafts finalised by May 2012, task 4 in November 2012

DaCoTA 6.1 Monitor normal driving behaviour

Representative sample of drivers / vehicles unobtrusive, simultaneous measurement

- Risk exposure data (RED)
 - vehicle type (model, year, ...)
 - driver type (age, gender, experience, ...)
 - trip variables (day, hour, road type, duration, ...)
 - map match (GPS locations)
- Safety Performance Indicators (SPI)
 - descriptive (speed)
 - speeding, DRL, protective systems, headway, lane behaviour
- Incidences
 - near crashes, critical situations, successful avoidance?

Near Crashes in DaCoTA

- Full video or triggered video is too costly
 - Only triggers from vehicle parameters
 - Certain types go undetected, because no vehicle reaction is present
 - No verification, high level of trigger values can minimise false positives
 - → count of events (+ situation and background of vehicle & driver)
- National: having a set of ND vehicles, equip a subset with additional devices (video) to verify and detect other types of near crashes

Task 6.2 - Study Design

- Small scale design
 - Analysis plan, derive indicators (SPI, RED, NC) from the data by algorithm.
 - Data gathering, reduction, retrieval, cleaning, storage (secured)
 - Database development
 - Ethical issues
- The Study design will use results of the pilots
 - Sampling and weighing, maintenance of the sample

Task 6.2 - Ethical issues

- Liability
 - Mounting DAS may not have any consequences
- Privacy
 - Data protection in the vehicle, during transfer, database storage
 - Insurance when DAS or complete car stolen
- Legal
 - Ownership of data: in case of an incident, authorities may not use ND data as proof
- → informed consent, insurance, procedures

Other drivers, passengers, sound, video, also persons outside the vehicle

Participant selection

- Sample size
 - How big is inter-human & inter-vehicle variation?
 - How big is the trip variation of the same participant?
- Country comparisons
 - Equal number or % of drivers?
- Representative sample
 - No requirements on age of driver, vehicle
- Selection bias
 - Ethical issues
 - Annual kilometres
- Sample maintenance (participants grow older)

Data

- Terabytes of data
- Time line; different devices may have different sample frequencies – synchronisation
- Finding an event in the data
- Response times

Focusing on speed SPI

For Safetynet

- Data on instantaneous speed of vehicles at a point
- A sampling procedure to select a restricted set of locations representative of the network
- Choice of observation period
- Measure of speed in reasonably free flowing traffic conditions
- Specific speed indicators
- Indicators disaggregation by road type, speed limit, vehicle type, period of day and period of the week

For NDO

- Speed variations during the trip of a driver
- A sampling procedure to select a restricted set of drivers representative of the population
- Choice of observation period
- **Filtering** of the vehicle speed to keep only free flowing conditions
- Specific speed indicators
- Indicators disaggregation by road type, speed limit, driver type, period of day and period of the week

ND Data measured during a specific trip

Task 6.3 Small scale Pilots

- Feasibility of data gathering, practical and technical
- 2 small scale studies (Austria and Israel)
 - Variables, equipment, ethical issues
 - Each country, 10 car drivers * 6 months
- Collection of
 - Data on speed behaviour, daytime running lights, seatbelt usage, lane keeping, headway
 - Data-logbook of drivers' identification (-10%), trip duration, length, timing, location, stratify road types and vehicle types
 - Certain manoeuvres/parameters as proxy for near crashes
- Additional data collection UK
 - Mobile phone

Methods for data-gathering

Data acquisition system •Austria

- pdrive system®
- pdrive light
- Israel
 - Greenbox & Mobileye, using TrackTec
 - Various car makes and models

•UK

- analysis of AT video data
- smartphone with GPS

Austria: trips over the day by gender

25-04-2012

TRA2012 Athens

AOF

sex

Israel: general results

Tin	ne-Based Measurement	180,499	64%
ent	Cut off Warning	46,503	16%
rem	Headway warning	16,491	6%
Measurement	Night and Dusk Indication	15,234	5%
	Lane Departure Warning	14,324	5%
Event-Base	Forward Collision Warning	8,303	3%
Eve	Light warning	2,136	1%
	Total	283,490	100%

Israel: road matching

25-04-2012

TRA2012 Athens

Israel: headway distribution

TRA2012 Athens

- Unique to DaCoTA / ND
 - Continuity of data gathering
 - Scale, representative and comparable
 - Simultaneous measurement
 - Focus on SPIs and Mobility
 - Risky behaviours occur in normal driving
 - Map-matching possible
 - Processing of data into useful safety indicators

Summary

- ERSO = data driven knowledge on road safety in EU
- DaCoTA = use and enhance ERSO
- WP6 = feasibility to fill ERSO with indicators derived from Naturalistic Driving: RED, SPI, NC
 - Monitoring $\leftarrow \rightarrow$ Research
 - Limited set of near crashes by vehicle triggers
 - Large scale, continuous monitoring, prevalence of risky behaviour
- Technically it is feasible; profit $\leftarrow \rightarrow$ investment
- Follow up after 2012?

Thank you for your attention

More information on www.dacota-project.eu

Name

Niels Bos

Email Organisation Address Tel.

Niels.Bos@swov.nl SWOV Duindoorn 32, Leidschendam The Netherlands +31703173313